
Analysis of the worth of rainfall-runoff information using statistical entropy concepts 

 

Aymen BEN JAAFAR 1, Zoubeida BARGAOUI 1 

1 Université Tunis El Manar, ENIT, Laboratoire de Modélisation en Hydraulique et 
Environnement ; BP 37, 1002, Tunis. Tunisia   

 

Abstract 

Rainfall and runoff (R-R) databases are among the most commonly used by hydrologists for 

assessing the rainfall runoff transformation and estimating evapotranspiration and principal 

water flows (percolation, infiltration) at the watershed scale and daily to annual time scales. 

Recently, the concept of statistical entropy was proposed for hydrologic data compression. 

Following this idea, R-R database of two moderate size watersheds from Northern Tunisia 

(Sejnane 376 km², Joumine 418 Km2 nowadays controlled both by dams) is analyzed using 

some entropy related concepts. The general objective is to integrate the transfer of 

information between both series in rainfall runoff model calibration and to perceive its impact 

on model calibration and validation performances. The methodology is based on estimating 

probability density of daily rainfall and mean daily discharge using the univariate and 

bivariate non parametric kernel method to quantify entropy and information gain. The 

integration is performed at the yearly scale.  The interpretation of results aims to detect 

periods (a number of consecutive years) of observation characterized by significant 

information gain. The worth of choosing such periods as calibration periods is examined. For 

these basins, it is found that the period with the most information gain results in the best Nash 

coefficients in calibrating runoff at monthly and decadal scales. With respect to model 

validation and when calibrating the model using other periods of the same length, model 

performance in validation remains good for the periods of maximum information gain.  
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1. Introduction 

The problem of hydrological models abilities to be transferred from period to period has 

recently gained interest, as demonstrated by the new IAHS Scientific Decade: “Panta Rhei” 

(Montanari et al., 2013). There is a kind of agreement that a rainfall-runoff (RR) model 

calibrated on a given period will generally not be able to simulate flows with a similar 

efficiency on another period (Merz et al., 2011; Coron et al., 2012). This lack robustness 

represents a serious problem for model application in practical conditions. 

Model efficiency  is often measured through root-mean-square error and NS efficiency (Nash 

and Sutcliffe, 1970). These criteria have the advantage of reflecting the model efficiency on 

all simulated time steps and can even be used to build model robustness criteria, as discussed 

by Coron et al. (2012). 

The objective of this study is to integrate the transfer of information between series of rainfall 

and runoff in model calibration in order to analyze model robustness hydrologic conditions. 

The methodology is presented in the next section. There, the entropy concept of information 

gain is briefly presented as well as calibration criteria and the rainfall runoff model adopted in 

the study. The subsequent section presents rainfall and runoff daily series for the study basins. 

Then it is focused on the results in terms of information gain findings, as well as model 

calibration and validation performances. Finally the conclusion is drawn about the worth of 

using maximum information gain periods for model calibration and validation. 

2. Methodology 

A water balance model operating at daily resolution is considered to infer the rainfall-runoff 

relationships. 

Presentation of the BBH model  

The conceptual water balance model BBH (Bucket Bottom Hole) is a lumped model, with a 

daily time scale, developed by Kobayashi et al. in 2001. The BBH is a water balance model 

which involves seven parameters: a (parameter related to field capacity), b (humidity drying 

soil parameter), c (the potential capillary rise), D (root soil depth), p (soil porosity), η 

(moisture retention capacity) and σ (the resistance of the vegetation cover to 

evapotranspiration). A reparametrization of this model has been undertaken by (Bargaoui and 

Houcine (2010)) so as to transform parameters a, b, and c which were initially estimated using 



            
 

rainfall-runoff data during model calibration process, in order to adopt pedo transfer 

parameters: Ks (the conductivity at saturation of the ground), Sfc (the capacity of the ground 

field) and B (a shape parameter representative of soil retention curve) instead of calibrated 

parameters. Thus, it is proposed to estimate model parameters Ks, Sfc, p and B using basin 

soil texture information. To that purpose, an average spatial value is adopted and weights are 

assumed as the percent of the basin surface occupied by a given soil texture class. Pedo 

transfer data are from Abid (2015). The parameters (D, η, σ) are estimated by model 

calibration using calibration criteria.   

Calibration model criteria 

In the next, calibration of (D, η, σ) is achieved by considering three hypothetic and potential 

values for D generally assumed in literature (D=300 mm, D=500 mm; D=1000 mm) and by 

screening the interval of variation of (0< η <1 ; 0< σ <1) with an increment ∆η=∆σ=0.01. The 

mean absolute relative error (AARE) which is a criterion associated to the water balance is 

considered to solve the parameters selection. Solutions that verify AARE less than a fixed 

threshold equal to 0.2 are selected. Other solutions are eliminated.  

Then, the Nash-Sutcliffe coefficient for two time scale resolutions is considered: Monthly 

(Nash1) and by decade (Nash2) are adopted to rank solutions obtained using AARE. The set 

presenting the best values for Nash1 and Nash2 is retained. To select the calibration period the 

concept of mutual information is then introduced.  

Mutual information or information gain  

The mutual information is  “a measure of the variables' mutual dependence” and is defined as 

follows ( Krstanovic and Singh, 1992):  

( ) ),()()(, YXHYHXHYXI m −+=                                                                                                   (1) 

with:  

Im (X, Y): the mutual information associated with two variables X and Y  

H (X, Y) the joint entropy associated with two variables X and Y  

H (X): the entropy associated with variable X  

H (Y): the entropy associated with variable Y 



            
 

In the present, X is daily rainfall, Y is daily runoff and mutual information Im,k (X, Y) is 

estimated for each year k.  

Figure 1 illustrates the link between the various concepts related to the entropy.  

 

Figure 1. Link between the various concepts related to the entropy 

(http://fr.wikipedia.org/wiki/Information mutuelle) 

We identify at a yearly basis years where the information that X and Y share is high are 

selected. Also, the analysis seeks to identify the sub period (a succession of years) where the 

gain is at its maximum in comparison to other sub periods and to adopt them as calibration 

periods. Such sub periods will be assigned as “Type A periods”. Non parametric marginal 

density distributions (Silverman, 1986) are estimated for both daily rainfall series and for the 

series of daily mean flow as well as non parametric joint probability distribution as presented 

in Yang and Burn (1994). Then, mutual information (information gain) is investigated  

Model performance assessment 

A comparison between calibration using type A period to the other sub-periods (assigned as 

type B) is achieved; To that end, continuous periods having the same size (length) as the 

highest gain period are selected. Using both the monthly Nash criteria (Nash1) and the decadal 

Nash (Nash2), this comparison is used to examine whether the period of type A (with 

strongest gain) gives up to the best performance levels in model calibration. For model 

validation, best solutions obtained from the various calibration periods (either of type A or B) 

are applied to the remaining sub periods in order to assess the worth of using the strongest 

gain of information period as calibration period. 

 



            
 

3. Results and conclusions 

The evaluation of information content for series of mean daily rainfall and runoff was 

performed for two catchments of 376 Km2 (Sejnane Déversoir) and 418 Km2 (Joumine 

Arima) situated Northern of Tunisia. Sejnane Dévesoir has a mean annual rainfall equal to 

2.36 mm/day and Joumine Arima 1.82 mm/day. 

Using an observation period of 15 years (1961-1975) for the watershed of Sejnane Déversoir 

and also 15 years (1967-1981) for the watershed of Joumine Arima, the evaluation of 

information gain is achieved for an annual time scale, adopting hydrological years (first day 

of each year: September the first). It results that the periods between the hydrological year 

1972-1973 and the hydrological year 1975-1976 for the Sejnane watershed and from the 

hydrological year 1967-1968 to the hydrological year 1971-1972 for the Joumine watershed 

bring the most information gain between rainfall and runoff data (period Type A). While the 

basins are neighbors, the periods of maximum information gain are not the same. 

Table 1 and 2 illustrate the best Nash obtained from calibration respectively for Sejnane and 

Joumine basins. 

Table 1. The best Nash1 and Nash2 obtained in calibration (Sejnane basin) 

D (mm) 300 500 1000 

Type of 

period 

A B1S: 

1961-

1964 

B2S: 

1965-

1968 

B3S: 

1969-

1972 

A B1S  B2S B3S A B1S B2S B3S 

Nash1 0.77 0.87 0.89 0.82 0.84 0.83 0.89 0.89 0.9 0.76 0.81 0.81 

Nash2 0.6 0.78 0.76 0.65 0.79 0.77 0.75 0.79 0.76 0.71 0.77 0.74 

 

Table 2. The best Nash1 and Nash2 obtained in calibration (Joumine basin) 

D (mm) 300 500 1000 

Type of period A B1J: 

1972-

1976 

B2J: 

1977-

1981 

A B1J B2J A B1J B2J 

Nash1 0.62 0.64 0.28 0.66 0.4 0.66 0.8 0.44 0.78 

Nash2 0.52 0.25 0.32 0.56 0.37 0.28 0.72 0.41 0.51 



            
 

From Table 1 and Table 2, it is seen that for both basins it is found that the best results with 

respect to Nash coefficients for monthly (Nash1) and decadal (Nash2) scales are obtained for 

the period of type A when compared to the other calibration periods with the same duration 

(type B). 

Table 3 and 4 illustrate the best efficiency criteria Nash1 and Nash2 obtained from transferring 

the model (all the solutions fulfilling the AARE > 0.2 criterion are here tested) to other 

periods.  

Table 3. The best Nash1val and Nash2val obtained from validating all the solutions 

calibrated from every sub-period on the other three periods for Sejnane basin 

Type A calib. B1S calib. B2S calib. B3S calib. 
A 
valid. 

 0.9 0.78 0.9 0.78 0.9 0.78 

B1S 

Valid.  

0.71 0.55  0.76 0.67 0.76 0.66 

B2S 

valid.  

0.81 0.75 0.82 0.77  0.82 0.77 

B3S 

valid.  

0.77 0.64 0.82 0.77 0.82 0.75  

 

Table 4. The best Nash1 and Nash2 obtained from validating all the solutions calibrated 

from every sub-period on the other two periods for Joumine basin 

Type A calib. B1J calib. B2J calib. 
A 
valid. 

 0.77 0.65 0.79 0.7 

B1J 
valid. 

0.4 0.37  0.43 0.41 

B2J 
valid. 

0.66 0.26 0.61 0.1  

 

Thus, when using the set of parameters calibrated on the basis of type B period, it is found 

that model efficiency remains good for the period of maximum information gain (type A) for 

both studied basins while it deteriorates for the other periods. So, this experiment reflects the 

worth of using maximum information gain periods for water balance model calibration. When 



            
 

the calibration period is selected as the period presenting the maximum information gain, 

Nash model calibration criteria was found higher and model validation was ensured. While 

such a result might be intuitive, conclusions need to be checked using many other basins 

before becoming effective. 
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